Oxi - Redução

Reação de Oxi - Redução: é aquela em que há transferência de elétrons.

Oxidação: é a perda de elétrons.

Redução: é o ganho de elétrons.

Agente oxidante: é o elemento ou substância que provoca oxidações (ele próprio se reduzindo).

Agente redutor: é o elemento ou substância que provoca reduções (ele próprio se oxidando).

Exemplo:

O Cl é o agente oxidante e o Na é o agente redutor.

 $\it N\'umero de oxidaç\~ao$: para compostos iônicos, é a própria carga do íon, para compostos moleculares, é a carga elétrica teórica que o átomo adquiriria se houvesse quebra da ligação covalente, ficando os elétrons com o átomo mais eletronegativo. A soma dos N_{ox} de todos os átomos, numa molécula, é $\it zero$.

Exemplo:

$$\begin{cases} & \text{Para o Al}^{3+} \colon N_{ox} = +3 \\ & \text{Para o O}^{2-} \colon N_{ox} = -2 \end{cases}$$

$$\begin{cases} & \text{Para o O}^{2-} \colon N_{ox} = +4 \\ & \text{Para o O}^{2-} \colon N_{ox} = -2 \end{cases}$$

$$\begin{cases} & \text{Para o O}^{2-} \colon N_{ox} = -2 \end{cases}$$

 $O \stackrel{\longleftarrow}{ } C \stackrel{\longrightarrow}{ } O$, cada oxigênio "fica" com o par eletrônico caso rompa a ligação,

pois o oxigênio é mais eletronegativo que o carbono.

Obs: o N_{ox} de um elemento ou substância simples é sempre **zero.** O N_{ox} do hidrogênio é sempre +1, exceto nos hidretos metálicos (NaH, CaH₂, ...) nos quais é -1. O N_{ox} do oxigênio é sempre -2, exceto nos peróxidos ($H_2O_2,Na_2O_2,...$) nos quais é -1.